4/5/2012: Second midterm exam

Your Name:

- Start by writing your name in the above box.
- Try to answer each question on the same page as the question is asked. If needed, use the back or the next empty page for work. If you need additional paper, write your name on it.
- Do not detach pages from this exam packet or unstaple the packet.
- Please write neatly. Answers which are illegible for the grader can not be given credit.
- Except for multiple choice problems, give computations.
- No notes, books, calculators, computers, or other electronic aids are allowed.
- You have 90 minutes time to complete your work.

1		20
2		10
3		10
4		10
5		10
6		10
7		10
8		10
9		100
Total:		

1) \square
2) T, F
3) \qquad
4) T, F
5)
6)
7)
8)
9)
10)
11)
12) \square
13)

14)
15)
16) $\mathrm{T} \quad \mathrm{F}$
17)
18)
19) T F
20)

The anti-derivative of $\tan (x)$ is $-\log (\cos (x))+C$.
The fundamental theorem of calculus implies that $\int_{0}^{1} f^{\prime}(x) d x=f(1)-$ $f(0)$.
The volume of truncated pyramid with a base square length 2 and top square length 3 is given by the integral $\int_{2}^{3} x^{2} d x$.
The derivative of $\arctan (x)$ is $1 / \cos ^{2}(x)$.
The mean value theorem implies $\int_{a}^{b} f^{\prime}(x) d x=f^{\prime}(c)(b-a)$ for some c in the interval (a, b).
If $F(x)=\int_{0}^{x} f(t) d t$ has an critical point at $x=1$ then f has a root at $x=1$.
The anti-derivative of the derivative of f is equal to $f+C$ where C is a constant.
If we blow up a balloon so that the volume V changes with constant rate, then the radius $r(t)$ changes with constant rate.
The identity $\frac{d}{d x} \int_{5}^{9} f(x) d x=f(9)-f(5)$ holds for all continuous functions f.

Two surfaces of revolution which have the same cross section area $A(x)$ also have the same volume.
If $x^{2}+y^{2}=2$ and $x(t), y(t)$ depend on time and $x^{\prime}=1$ at $x=1$ then $y^{\prime}=-1$.
The identity $\int_{2}^{9} 7 f(x) d x=7 \int_{2}^{9} f(x) d x$ is true for all continuous functions f.
The improper integral $\int_{1}^{\infty} 1 / x d x$ in the sense that $\int_{1}^{R} 1 / x d x$ converges for $R \rightarrow \infty$ to a finite value.
If $f_{c}(x)$ has a local minimum at $x=2$ for $c<1$ and no local minimum anywhere for $c>1$, then $c=1$ is a catastrophe.
An improper integral is an indefinite integral which does not converge.
If $f(-5)=0$ and $f(5)=10$ then $f^{\prime}=1$ somewhere on $(-5,5)$.
The sum $\frac{1}{n} \sum_{k=0}^{n-1} \frac{k}{n}=\frac{1}{n}\left[\frac{0}{n}+\frac{1}{n}+\cdots+\frac{n-1}{n}\right]$ is a Riemann sum to the integral $\int_{0}^{1} x d x$.
The anti-derivative of $\operatorname{sinc}(x)=\sin (x) / x$ is equal to $\sin (\log (x))+C$.
The anti-derivative of $\log (x)$ is $1 / x+C$.
We have $\int_{0}^{x} t f(t) d t=x \int_{0}^{x} f(t) d t$ for all functions f.

Problem 2) Matching problem (10 points) No justifications are needed

a) (6 points) Match the integrals with the pictures.

Integral	Enter 1-6
$\int_{-1}^{1}(1-x)^{2} d x$	
$\int_{-1}^{1}\|x\| d x$	
$\int_{-1}^{1} x^{4} d x$	

Integral	Enter 1-6
$\int_{-1}^{1}\|x\|^{3}-\cos (3 x) d x$	
$\int_{-1}^{1}\left[\sin ^{2}(\pi x)-\cos ^{2}(\pi x)\right] d x$	
$\int_{-1}^{1} 1-\|x\| d x$	

b) (4 points) Match the concepts: each of the 4 figures illustrates one of the formulas which are the centers of the mind map we have drawn for this exam

Problem 3) Matching problem (10 points) No justifications are needed.
a) (6 points) Match the volumes of solids.

Integral	Enter 1-6
$\int_{0}^{1} \pi z^{4} d x$	
$\int_{0}^{1} \pi z d z$	
$\int_{0}^{1} \pi(4+\sin (4 z)) d z$	

1)

b) (4 points) Fill in the missing word which links applications of integration.

The probability density function is the		of the cumulative distribution function.
The total cost is the		of the marginal cost.
The volume of a solid is the		of the cross section area function.
The velocity of a ball is the		of the acceleration of the ball.

Problem 4) Area computation (10 points)

Find the area of the region enclosed the graphs of $y=x^{4}-12$ and $y=8-x^{2}$.

Problem 8) Implicit differentiation and related rates (10 points)
a) (5 points) The implicit equation

$$
x^{3}+y^{4}=y+1
$$

defines a function $y=y(x)$ near $(x, y)=(-1,-1) . \quad$ Find the slope $y^{\prime}(x)$ at $x=-1$.
b) (5 points) An ice cube of side length x melts and changes volume V with a rate $V^{\prime}=$ -16 . What is the rate of change of the length x at $x=4$?

Problem 9) Catastrophes (10 points)

Verify first for each of the following functions that $x=0$ is a critical point. Then give a criterium for stability of $x=0$. The answer will depend on c.
a) (3 points) $f(x)=x^{5}+2 x^{2}-c x^{2}$.
b) (3 points) $f(x)=x^{4}+c x^{2}-x^{2}$.

Determine now in both examples for which parameter c the catastrophe occurs
c) (2 points) in the case $f(x)=x^{5}+2 x^{2}-c x^{2}$.
d) (2 points) in the case $f(x)=x^{4}+c x^{2}-x^{2}$.

Problem 7) Anti derivatives (10 points)
Find the following anti-derivatives
a) (2 points) $\int \frac{3}{\sqrt{1+3 x}}+\cos (x) d x$
b) (3 points) $\int e^{x / 5}-7 x^{6}+\frac{4}{x^{2}+1} d x$
c) (2 points) $\int \frac{4}{e^{4 x+5}}+3 \sin (x) d x$
d) (3 points) $\int \frac{1}{\sin ^{2}(x)}+\frac{4}{x} d x$

